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A fast accurate multl-stage numerlcal method, back-averagmg, IS developed, analyzed, and 
optlmlzed The techmque 1s used to solve an alternatmg dImensIonal numerlcal slmulatlon of 
fusion plasma transport based on nonhnear reslstlve magnetohydrodynamlcs (MHD) 
equations The geometry of the model IS a comphcated time-dependent two-dImensIonal con- 
figuration of flux contours analogous to a doublet NumerIcal convergence rate comparisons 
of the optlmlzed back-averagmg method with various other lteratlve techmques for solvmg the 
numerlcal problem show that optlmlzed back-averaging 1s the fastest method of all those 
consldered Moreover, to accomphsh convergence m a practical length of time for extremely 
peaked profiles and comphcated time varymg conliguratlons, back-averagmg IS essential 
Further, with a mlmmum of addItIonal computation, optlmlzed back-averagmg yields extreme 
accuracy ‘i 1988 Academic Press Inc 

This IS a theoretical and numerical study which develops a practtcal algorithm for 
solving nonlinear reststtve MHD equations used in transport theory of fusion 
plasmas. The method is applicable to systems of equations other than the MHD 
system treated here. 

The dertvatton of the system we treat, Grad and Hogan [l], IS based on the 
observation that a resistive, heat conducting MHD fluid evolves on several different 
time scales. Constderable advantage can be gamed if physical phenomena whtch 
evolve on a fast time scale can be held fixed while those evolvmg on a slow time 
scale vary. These considerations were first applied in Grad and Hogan [l] diffusion 
theory. There, it was recognized that the time derivative m the momentum equation 
serves only to facilitate the distribution of plasma pressure over the flux contours of 
the magnetic field. We omit this time derivative from the governing system of 
equations and lose plasma waves but obtam a vastly simpler set of equations whtch 
are interpreted as follows: the magnetic field evolves on a time scale governed by 
the resistivity and the plasma pressure is instantaneously adjusted over the flux 
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contours which control the magnettc field. Thus, pressure balance occurs on a time 
scale which is not included m the final system of equations. 

More recent approaches to the calculation of transport in toroidal plasma fusion 
devices include variations of the original Grad-Hogan theory. In particular, the 
papers of Pao [2] and Jardin [3] are notable since, for certain systems, they 
provide a straightforward route toward numerical implementation. However, for 
plasma systems which contain complex three-dimensional magnetic field topology, 
Grad’s flux surface averaged technique of preparing the governing equations, 
provides an optimal mix of physics and geometry. Here we use Grads flux surface 
averaged equations and develop a fast, accurate iterative method for numerical 
solution. A detailed treatment of the equations and the solution algorithm 
(Alternating Dimension Algorithm) appears in [4-73. 

The introduction of flux surface averaging leads to a novel generalised or “queer” 
differential equation [8,9]. Numerical solutions of the flux surface averaged 
equations have been carried out over the past decade by standard iteration 
techniques. These techniques fail for the two-dimensional configurations, involving 
complicated time varying topology including angularities, which we treat here. For 
these, we establish and accelerate convergence by multi-stage iterative techniques, 
in particular, back-averaging. The technique applies generally to nonlinear iterative 
schemes for finding a fixed point. 

In Sections 1, 2, and 3, we outline the Alternating Dimensional (AD) algorithm 
for a resistive plasma and describe its numerical formulatton for a particular 
magnetic field topology. Then, we define back-averaging formally and discuss 
regions of convergence and optimization. Finally, we demonstrate the advantages of 
back-averaging by using it m the Alternating Dimension numerical code and 
compare the calculated convergence rates with those of other methods. 

1. THE SYSTEM OF EQUATIONS 

We solve the system of equations: 

A$ = J(ll/, t), (1) 

a$ - %+ U.v+=r] A$, (2) 

v.lY=o. (3) 

in two dimensions (x, y) and time t (see Fig. 1). This system describes the evolution 
of a resistive plasma, which passes at each instant through an equilibrium state for 
a large aspect ratio Tokamak in the range of low fi (the ratio of plasma pressure to 
magnetic pressure). Here q 1s a constant reststivity, I(/(x, y, t) is the magnetic flux, 
J($, t) IS transverse current density, and 0(x, y, t) is plasma velocity [6]. 
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Following [S], we mtroduce the microcanonical area-weighted average on a flux 
surface, 

(4) 

where the line integral IS taken along a Ic/ = constant contour, and V($) is the area 
enclosed by the contour. 

We define the inductance K(V) [S, lo] as 

K(V)=(IVVI*). (5) 

Taking the flux average of Eq. (2) (recall that 11 is constant), we obtain 

( > !$ + (D.V$>=q(A$). 

An elementary calculation shows that 

<Ati > = (W’)‘, (7) 

where II/’ indicates the derivative of $( k’) with respect to V, $ bemg the inverse 
function associated with I’($) [IS]. 

From Eqs. (6) (7), and (3) 

ICI* = rl(W’)‘, (8) 

where II/, = (a/&) +( V, t). 
In sum, to lowest order the numerical code simulates the reduced plasma 

equations 

A$ =J($, r), 

9, = rl(W’)‘, (9) 

V.B=O, 

which is solved without reference to U. The velocity has a higher order and could 
be found. if desired. 

2. ALTERNATING DIMENSION NUMERICAL 
FORMULATION OF THE MODEL 

The alternating dimension (AD or l+D) numerical formulation was used first in 
[S] and then in [6]. In the resistive case, considered here, the system of equations 
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(9) is separated into two equations which are solved alternately. The two equations 
are: 

- the two-dimensional (2D) equtlibrmm equation, 

A$ = J($, t), (10) 

where .I($, t) is assumed to be a known function of I~/(x, y, t). 
- the one-dimensional (1D) evolution equatton for the poloidal magnetic flux, 

II/( VT [I? 

tiL,( v, f) = v(K( K r) VW K t))‘, (11) 

with K( V, t) given. After (10) is solved, K( V, t) is computed for the solution of (11) 
from the contours $ = constant. 

The 1D and 2D equatrons are coupled by 

J($, t) = rl(K( K t) Ic/‘( K f))‘. (12) 

The code alternates between an inner loop which solves (10) and uses the result 
m an outer loop which solves ( 11). 

Inner loop (an iterative algorithm for solving (10)). Initrally an approximation 
to the family of contours IL,, = constant and a profile J,,(I+G~, to) as the right side in 
(10) are given. The algorithm solves a nonlmear elliptic free boundary problem with 
appropriate Dirichlet boundary conditions. Specifically, we are considering a 
plasma domain separated by a free boundary from a vacuum domain bounded 
externally by a perfect conductor. The condition on the free boundary is that the 
cross-secttonal area of the plasma is constant, V = Vplasma. 

Let $,(x, J?) represent the flux function at the nth iteration and V,(x, y) the area 
inside the contour $,(.u, y) = constant. Without further comment, we treat V,, as a 
function of $,, (and t) or, Inversely $, as a function of V,,. We iterate as follows 
until a fixed point solution of (10) is found: 

II/ n + , = A -~ ‘(J,(ll/,v to)) in D 

JO($O? to) given, 

II/ = $B(b) given on dD, 
(13) 

V plasma fixed. 

Here D is a rectangular domain inside whtch the vacuum field and plasma is 
contained. (See Fig. 1.) 

The solution is characterized geometrically by tracing the contours += constant 
on a two-dimensional mesh and calculating V(4) on a one-dimensional mesh. 

The (2D) eqmlibrium solution gives the following physical quantities at time lo: 
$(x, y, to), $( V, to), J(x, y, to), .I( V, to), and K( V, to). This completes the inner Ioop 
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FIG 2 A flow chart of the outer loop tteratton K(t,) and K(r,) are used to determme K(r) 
numertcally as ptecewrse hnear functton. Convergence IS determmed by comparing J,(t,), the profiles 
resultmg from the solutton to the ddlusron equatton. to Jr(r,), the profiles resultmg from the inner loop 
at ttme 1, 
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Outer loop. Using the equilibrium geometry at time to obtained above, the ID 
flux transport equation (Eq. (11)) is solved on a (one-dimensional) diffusion mesh 
for t, < t < t, with $ given on the plasma edge. 

The time dependence of K( V, t) is numerically approximated by a plecewtse 
linear function m t. This requires an outer loop Piecewise constant interpolation 
does not. 

The outer loop (see Fig. 2) by alternating between the inner loop equilibrium 
solver and the 1D evolution solver, finds by iteration a self-consistent current 
profile .I( V, tl), t, > t,, which produces the quantities tj( V, t), J( V, t), K( V, t) for 
t,<t<t,. 

For surveys of AD (l+D) transport codes including the numerical formulation of 
many such codes and a detailed description of some problems which have been 
solved usmg them, see [ 11, 121. 

3. THE DOUBLET 

A doublet is a special geometrical contiguration of flux contours, II/ = constant, 
with a separatrix, a contour shaped like a figure eight, which bounds two islands of 
magnetic flux contours. (See Fig. 3.) It is used in [6] to study the evolution of the 
topology of contours. An interesting problem for numerical solution, which has 
important physical consequences, results from the formation and motion of the 
separatrix. This creates a very sharp peak in the current density profile. (See Fig. 4.) 

The doublet is created by shaping coils, ideahzed in our case by specifying II/ on 
segments of the rectangular boundary (cf. (13)). We then simulated oscillating 

FIG 3 The doublet geometrical conftguratlon A separatrlx (dotted hne) bounds two Islands Lmes 
represent 1(1 = constant contours 
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FIG 4 Current density profile A smgularlty m the form of a surface current on the separatnx arises 
m the doublet model of Grad et al [6] Our slmulatlon mdlcates this by a sharp peak m the J-profile 

currents in the shaping coils by superimposing a sinusoidally oscillating boundary 
condition on II/ in these segments and taking constant boundary values elsewhere 
on the boundary. This is a 2D analog (low j?, high aspect ratio) of the Doublet III 
experiment at GA Technologies, Inc. [ 131 in the late ’70s. 

The doublet geometry is treated as a free boundary problem requirmg the 
asstgnment of values of the volume,’ V, and tj to the separatrix. For thts we 
proceed as follows: We introduce V,,,(r), the volume of the separatrix, giving it a 
smooth piecewtse cubic representation. Accordingly, the coordinates inside the 
separatrtx are m terms of V/V,,,(t) and outside (V- V,,,(t))/( VP - Vsep( t)), where 
V,,,(t) (the volume inside the separatrix) is piecewise cubic m t and I’, (the total 
plasma volume) is constant. The volume V&t) and its derivative V&,(t) are 
approximated by continuous interpolation between t, and t, + dt. These inter- 
polations are calculated by iteration in the outer loop. Because K is singular at the 
separatrix and J is highly peaked [6], normalization IS particularly important since 
the smgularity in normalized volume becomes stationary. The outer loop 
calculation is extremely sensitive to the position and velocity of the singularity. The 
iteration must therefore receive very special treatment; the details will be treated in 
Section 9. 

Back-averaging will have three uses: to solve the nonlinear elliptic free boundary 
problem (inner loop), to determine the self-consistent J profiles (outer loop), and to 
calculate the velocity of the separatrix 

’ Area = volumejumt height 
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4 BACK-AVERAGING AND FIXED POINT 
ITERATION SCHEMES IN GENERAL 

Back-averaging is a multi-stage acceleration technique for calculating a fixed 
point 1 of a transformation F: V + V of a finite dimensional vector space V. 
Although the method applied to nonlinear problems, for the purpose of analysis 
and optimization of the back-average schemes, we later assume that F is 
approxtmately linear in the neighborhood of a fixed point. 

We review the terminology and concepts for fixed point iteration schemes. A 
fixed point of F satisfies 

F(x) = zk? (14) 
The iteration scheme 

x,, , = F(x,) (15) 

converges provided that the Lipschitz condition 

IIF(F(Q)11 G Cllf’-Qllv c< 1, 

holds on a neighborhood of the fixed point which contains X0. If F IS differentiable, 
instead of the Lipschitz condition, we shall use the bound on the derivative, 

IIF’(m < 1. (16) 

In general IIx(I denotes an appropriate norm of Y. Here we use the Euclidean norm 
but others are applicable and numerically useful. 

Since F is differentiable we can approximate F by a linear function in the 
neighborhood of a fixed point P by 

F(x)zL.x+B, (17) 

where L = F( P). In practice, we shall have only approximations to L and B from a 
priori calculations. We employ the iteration scheme for Eq. (17): 

IN+*= L.X,+B, 

Io=B. 
(18) 

This yields 1, = ( 1 + L + L2 + . . . + LN) TO. The convergence of the iteration 
scheme in Eq. (18) is equivalent to that of the series: 

(l-L)-‘=1+L+LZ+L3+ . . . (19) 

For the sequence {x,} defined by Eq. (18), we define 

A,= IIX,v-X,x-,11, (20) 

~N2.y. 
N 

(21) 
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If (Z.Nf behaves like a geometric sequence, then L, has a limit A. This A will be the 
absolute value of the largest eigenvalue of L. Convergence is guaranteed if (I( < 1 
but our problem does not always satisfy that condition. In fact, 111 less than but 
close to 1 is not useful. (Even m our “easy” case 13L) = 0.9979.) We need a method of 
obtaining convergence when it does not exist or accelerating it when it does. That is 
the topic of the next section. 

5. BACK-AVERAGING 

For the purpose of generating or acceleratmg convergence, Stevens et al., used 
the method of simple back-averaging (SBA) [S], also called two-point back- 
averaging. Here, we furnish an analysis and optimization of SBA and extend the 
method to a more powerful technique, three-pomt back-averaging. Simple back- 
averaging is analogous to the method of successive overrelaxation (SOR) [ 141. 

Consider a transformation from the sequence {X,> of (18) to a new sequence 
( YN} defined as 

{RN) + { PN), 

&=X0, (22) 

P,+,=(l-C1)F(PN)+tLPN, CtER. 

If {X,} is governed by the affine transformation T: x+ LX+ B, Eq. ( 18) then 
{ Y,} will be defined by 

Y N+l= FYN, 

F=(l -a)T+a 
(23) 

If { ZN 1 becomes geometric, i.e., RN + 1 = AX,, J complex and constant for large N, 
then 

PN+, =XF,, 

X=(1-a)l+a. 
(24) 

Two-point back-averaging is so called because two successive stages P, and 
F( P,) are used at each iteration step. The concept of SBA is simple: the nth iterate 
Y N+l is not F( YN) alone, but a linear combination of Y, and F( YN). In the 
simplest form Y, + , is a weighted average of Y, and F( Y,) with weights between 
zero and one. More generally, the weights are less restricted; we require only that 
they are real. This increase in generality is crucial, 

Geometrically, we interpret the connection between 1 and I for a given a as 
follows. Consider A = 5 + iv in the complex plane. Draw a line (L,) passing through 
L and (l,O). Depending on the choice of a, 1 can lie anywhere on this line. If a = 0 
then 2 = 1, and the iteration does not involve back-averaging. If a = 1 then 2 = 1 
and the scheme is marginally convergent. Notice that a can be negative or > 1. 
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Next, consider two successive applications of SBA using a different back-average 
parameter at each application or stage. Using the linearized form of F, T, let 

~‘,~R=(aL+(l-u.,)T):~, 

&oX=(cc,+(l-~~)T):x. 
(25) 

Combining T, and TZ gives the three-pomt back-average (3PBA) formula, 

Lx, _ G8=~~oT,~8=(az+(i-~Z)~)(IY,+(~-C1,)~)"~ (26) 

Using the definition of Ix,,}, Eq. (18) the 3PBA transformatton is 

{XI + f m 

F, =X1, (27) 

K,+, =cc,a,~~+[(1-a,)cr~+(1-cl,)cr,]T~~,,+(1-cr,)(l-cr,)T2~~~. 

A three-point back-average iteration, TX,,, , can be written as a 3-stage iteratton 
scheme: 

Thus 3PBA is a multi-stage iteration scheme [ 151. 
We shall describe an optimal choice of a, and ~1~. Earlier m the literature of 

plasma equilibria, Marder and Weitzner [16] gave a special 3-stage iterative 
method which can be written as a 3PBA scheme but 1s not optimal. This is given by 

yn+ I =(1-p*) ~,,,+2fi2F(~n)-flB"F(F(~,l)), (29) 

In the hnear case, this scheme can be factored as 

yil+,= CC1 -P)+BT)lC(l +P)-PTlo ym (30) 

which amounts to (27) with 

a,=(l-P), 
a?=(1 +/I). 

(31) 

Unfortunately, in our application MWS tends to converge slowly. To overcome 
this slow rate of convergence, at the expense (or benefit) of changing the region of 
convergence and perhaps shrinking it, we apply 3PBA by treating u, and a2 as 
independent parameters. 
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6. REGION OF CONVERGENCE 

Recall that m two-point back-averaging A is the eigenvalue of T and 1 the 
corresponding eigenvalue of T, see (24). 

The image of 1x1 < 1 m the complex A-plane, is the interior of the circle of 
marginal convergence CM,, defined by 

I I 
1 1-a =- 

a-l lol-11’ 

with center at ct/(cr - 1) on the real axis and passing through the point A= 1. If T is 
iterated with this value of a, all eigenvalues A inside CM, yield convergence. 

If Re{J.) > 1, { YN}cr, the sequence obtained by back-averaging with a, can be 
made to converge by taking a = 1 + E with sufficiently small positive E. Given 
WA} < 1, ( P,v)., converges for x = 1 -E and sufficiently small positive E (see 
Fig. 5). 

If the eigenvalues can be enclosed in a circle CM,, { p,}, converges. Therefore, 
when all eigenvalues have Re{ A} < 1, an a can always be found which yields con- 

8.0. 

cl=l-E a=l+E 

irl 

-8.0. 

t ' 

-8.0 4.0 0.0 4.0 a.0 

5 

Frc 5. Circles of margnal convergences CM, If I IS an elgenvalue of T and hes mslde CM, then 
the calculation of the elgenfunctlon correspondmg to the elgenvalue I, converges Five curves CM, are 
shown The largest two are the cases a = 1 - E and a = 1 + E Next m SW IS a a = 0 (no back averagmg), 
next IS a = l/& In all cases, E = 0 2 The dotted hne IS : = I which IS tangent to CM, for all a at q = 0 
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vergence. Likewise, when all eigenvalues have Re{ A} > 1, an ~1 can be found which 
yields convergence. However, no simple back-average scheme converges if there are 
two eigenvalues, 1, and II,, satisfying Re A, > 1 and Re AZ < 1. In addition, if 
A = 1 + iv for any ‘I, no simple back-average scheme converges. 

For a three-point back-averaging scheme, the region of convergence 1x1 = 1 of 
tp, is calculated as 

III= Ia,+(l-“2)Ll la, +(l -“,)Al. (331 

Equivalently for p = 1x1, 

P2=C~,~*+C(~,+~2)-2~,~2l5+C1+crla2-(C(*+C(2)l(52-~2)}2 

+~2{(a,+a,)-2a,a2+2[1+a,a2-(a,+a2)]5}2. (34) 

In the above, substitute 
a, +a,=2-6, 

a,a2 = 1 -E, 
(35) 

2.0 

-1.0 

-:Ilj; . 1.0 2.0 3.0 4.0 

E 
FIG 6 Curves of margmal convergence for the Marder-Weltzner lteratlon scheme are lemmscates 

LB The crossmg pomt IS 5 = 1 and the petals are asymptotic to 5 = q and ( = -1 As B IS decreased L, 
becomes larger In the above the largest curve corresponds to /3 = 0 45, the next smaller to j3 = 0.5, then 
/?=071, fl=O87 and the smallest, /I= 1.00 
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p2=[(1--E)+(2E--6)5+(6-&)(r2-q2)]2+~2~2E-8+2(8-&)~]2. (36) 

In (36), we set 

3.0 

2.0 

1.0 

I" .o 

-1.0 

-2.0 

-3.0 

(37) 

(38) 

FIG. 7. Curves of margmal convergence, I-,, These are dlsjomt ovals The center of symmetry E;, 

shifts to the rtght of < = I and the size of the ovals mcreases as 7 IS decreased. NotIce that all the ovals on 

the left stde of r = 1 pass through (1,O) In this figure, the curves I-,, are shown for the followtng (9, fl) 

pairs. (0 5 1.8). (0.71. 18). (087, I8), (I , 18). and (1 22, 1.8) 
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$+~2+2&7-2(53-Q)+(1-j+o (39) 

and hence 

ri=-(z+l)+-[(Z+1)*-(+2~-1-p]r’~. (40) 

For any a,, a2 the contours p = constant belong to the family of curves in the 
<, q-plane consisting of ovals of Cassini, lemmscates, and “peanuts.” In partrcular, 
the curve of marginal convergence, p = 1, which bounds the set of eigenvalues for 
which 3PBA converges, is a member of this family. 

Let the curve of marginal convergence be denoted by r,,,, or, equivalently, m 
terms of E and 6, by r,,. Recall from Section 5 that MWS is 3PBA with ct, + LYE = 2, 
cl,c12 = 1 -/I’. In terms of E and 6, cf. (31) and (35), MWS is equivalent to 3PBA 
with S =0 and s=f12. In this case, the curve of marginal convergence r, is a 
lemmscate L,. (See Fig. 6.) 

3.0 

2.0 

1.0 

10 
.O 

-1.0 

-2.0 

-3.0 
-1.0 0.0 1.0 

F 

FIG 8 The degenerate case m which there are only two q = 0 Intercepts. Trt are smgle ovals or 
peanuts. fi = - 1 m all the above, f = 141 for the largest peanut, 1’ = 0.71 for the smallest oval. The 
mtermedlate curves are f = 1 22, f = 1.00, and f = 0 87. 
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We replace a,, ~1~ by the parameters 

(41) 

to depict the family m the different parts of the parameter range (see Figs. 7 and 8.) 

7. CHOOSING AN OPTIMAL SIMPLE BACK-AVERAGE PARAMETER 

We seek an u for which the iteration of T converges quickly. Let e be the 
eigenfunction of T with eigenvalue ;1 (Re(J) # 1). Set p = 1x1 for 1 corresponding to 
the specific eigenvalue, ,4 = 5 + iv of T, and back-average parameter a. We have 

p~=~X~~=[(l-cc)2(~2+~~)+2c((l-a)~+cr2]. (42) 

The convergence to the eigenfunction will be optimal for the value a, of a which 
yields the minimum value pi of p2. 

r12+w- 1) 
a*=q2+((-l)2‘ (43) 

With this choice of a,, for r # 1, convergence is assured: 

p:=minIXI’= ” 
v2+el)2 

< 1. (4) 

If I IS real, then there exists an a* such that p* = 0. This will sum the series in one 
iteration and eliminate the eigenfunction belonging to 1. In this case, 

1 
a*== (45) 

Note that the optimum back-average parameter u* depends on the value of the 
eigenvalue A. If T has a dominant eigenvalue, then the convergence of the iteration 
scheme may be satisfactory if the back-average tl* is calculated using the dominant 
eigenvalue. However, if the spectrum of T is broad, convergence can be improved 
by taking an optimum a,pt of ci relative to a set, S, of N eigenvalues, 
s={~,=~,+ltj,,J=l,..., iv}.’ 

Finding aoPt is a nonhnear minimax optimization problem. Algorithms for 
solving the general nonlinear minimax optimization problem are given by 
Overton [17]. Here, we solve the optimization problem when S is a set of only 
three eigenvalues. 

2 The dlfftculty IS that a lesser elgenvalue may emerge, after simple back-averagmg, with an absolute 
value even greater than that of the orlgmally largest elgenvalue 
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Consider the following minimax optimization problem for defining aOpt, 

where 

F,(a)=max{pf(a),j= 1,2, . . . . N}, (47) 

and 

p,‘(a) = I~,(a)12; (48) 

here x,(a) is the eigenvalue of T from back-averaging with a which corresponds to 
the eigenvalue A of T. 

Notice that the p, are convex functions of a. F, 1s also convex. Since F, is 

0 

FIG 9. Curves PA,(a) for A,=<,+lq, The curves are convex wtth mmtmum at a*(A,) gtven by 
Eq (44) pL,(a) 1s never zero for Im(A,) # 0, however, pAJa*(A,)) < 1 for all A,. If only one A, IS constdered 
m determmg the opttmum then a*(S) ts the result If more than one A, IS constdered, the mnumax 
opttmtzatton algonthm outhned m Sectton 7 determmes a * In thts case the mtersection of pI, and p& 
gwes a* In the above I, = 05 + 0 II, A2 = -06 + 0.2r, AJ = -0.7 + 031, 1, = -08 + 0.41, 
A,= -09+05r, I,= 1 +061 
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continuous and piecewise differentiable, each piece being a segment of some p,, the 
global minimum of F, will occur either at a minimum of p,(a) for some j or at an 
intersection of p,(a) with ~~(a) for some (j, k). (See Fig. 9.) 

With N= 3, an optimization algorithm need not be sophisticated. We shall use 
the following optimization procedure: 

1. We find the intersections, ~,,,(a,, A.,) of p,(a) and ~~(a), for all (A,, &) pairs 
j, k = 1, 2, 3 using Eq. (49), namely, 

2(Re A, - Re Ak) 
b$l’- l&l2 I) . (49) 

and form 

INT= {or,,,(A,, &)< 1, pairs(A,, &), j#k, j, k= 1, 2, 3). (50) 

(Besides the intersection given by (49), there is a second intersection at a = 1, where 
p( 1) = 1 for all eigenvalues.) 

2. Let A,, yield the maximum of the mmima of the several p,(m); I,, satisfies 

(51) 

3. If the set INT of intersections is empty, then ~l~,,~=a.,J&,,) as defined by 
Eq. (43). 

4. If INT # (c$} then set TEST = INT u (a,(&), j= 1,2, 3). 
5. From TEST form the set TEST’ by deleting any elements which yield 

points below the graph of F M; that is, delete all a,* for which ~,(a:) < F,,,(ct,*) and 
all IX,, for which ~,(a,,) < F,(cc,), where uV = a,,,(A,, A,). 

6. In conclusion, aOpT is given by 

P(~OFT) = aEyz,, (F(a) ). (52) 

The cost of choosing aOpt based on three eigenvalues is negligible. However, if a 
significant number of eigenvalues are used, the cost would become prohibitive. The 
cost of calculating N eigenvalues involves solving an Nx N inverse problem and 
N + 1 iterations of F to find T after which the eigenvalue problem must be solved. 
The additional information gained by using a large N is not cost effective because 
the original transformation F is nonlinear and T is only an approximation, which, 
at times is quite noisy. Therefore, the benefit of an extremely precise determination 
of a will be counteracted by the noise in the system. In practice either three or four 
eigenvalues are calculated. However, only the two most dominant eigenvalues are 
used. We assume the third eigenvalue is zero to accommodate the many eigenvalues 
near zero. 
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8. OPTIMIZATION OF THREE-POINT BACK-AVERAGING 

For 3PBA, there are two back-average parameters, CL, and CL~, available for 
optrmization. Denote the optimal pair of back-average parameters by (a:, a:). 

In Section 7 for SBA, using one ergenvalue 1 to determine the optimum, we 
obtain the optimal a* from Eq. (43). For 3PBA with only one eigenvalue, 1, the 
optimal pair becomes (a*, a*), where a, satisfies the same equation. This follows 
immediately from the following: From Eq. (26) 

ll~~,,.211=Il~l+(1-~,)~II Il~*+(1-%)~II. 

Consequently, when we use only one eigenvalue A, 

(53) 

minIIXl,a,ll=minIlcc,+(1-cr,)~llminllcrz+(1-az)lll. (54) 
a,w a* 22 

~1, satisfying (43) minimizes each factor m (54); hence, the optimal pair is (u.,, a*). 
If two eigenvalues, il, and 1,) are used to determine the optimal pair (al, aZ) and 

each M is real, then the optimal pair is (a,(J,), a,(A,)), where 

(56) 

This IS a consequence of the followmg proposition: 

Given a linear transformation T of a linear vector space V of dimension IV. 
Assume that T has exactly M drstmct eigenvectors, e,, whose eigenvalues 
are A,, j= 1, 2, 3, . . . . M. If ,I., are real for all j, then there exist a,*, 
j = 1, 2, . . . . M such that the Euclidean norm, II ?+; a;ll, of the M+ 1 
stage back-average transformation, vanishes. 

We omit the proof which 1s straightforward. 
For real A, and &, a: and a: are readily determined. For complex eigenvalues 

A,=t,+ilr,,~=1,2, ifp,,(a,,a,)#P12(aI,aZ)for any (a,,az) other than (1, l), the 
optimal (a:, a:) will be the pair which minimizes the maximum of pi,(a,, az) and 
plJal, al). If p,,(a,, a*) = PJa,, al) along a curve, Q, in the (a,, a2) plane the 
optimum occurs at a point on Q for which pi,(a, , a2) is minimum or elsewhere at a 
minimum of pI,(a,, az) or pi2(a,, a*). The extremum on 52 can be calculated by 
minimizing the Lagrange multipher function, $8: 

where 6 = 1 - a, and p= 1 - a2. In terms of Y the extremum problem becomes 

min [9], (58) 
Ft. B. P 
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SubJect to 

I&a+(l-G)l In,B+(l-Ir)I-ln,~+(l-a)l I~JJ+(1-~,I=O. 

Smce Q is convex, we determine the mimmum on Q as the solutton of 

gLE=E=O. 
@ SCL 

Using A, = 1 - 1, and fiz = 1 - L2, yields the system 

7’47 
[ 

(R,12-Ifiz12+F(IK,(‘Re~,-Ifi,(‘ReX2) 

IJ,l”- lJ21” 1 
$2(I~,12-l~2(2-2$(ReR,-Re42) =. 

12,1’- 11,l” 1 7 

(59) 

(60) 

(61) 

where 

The mmimum problem IS reduced to the solution of the 4th-order system (60) and 
(61) for y‘ and $ which is accomplished numerically. Now we wish to solve the 
minimax problem correspondmg to the one of Section 7. For this general 
optimization problem, a set, S, of N eigenvalues, A,, determines the optimum pair, 
(u:*, a:*). Hence let (a:*, c$*) be the pan which solves the following problem: 

where 

and 

pA,(aIt a2) = ll~,ll. 

(62) 

(63) 

(64) 

Here 1, 1s the eigenvalue of FE,rz corresponding to the eigenvalue A, of T. 
Notice that p = pA,(cr,, CC*), J = 1, 2, . . . represent convex surfaces in three-space 

(p, CI~, 0~~). Moreover, FM is composed of sections of pn,(~,, t12) surfaces for some 
AI E S and is convex. The global solution to the minimax problem lies at a minimum 
of p,+(cx,, do*) or at an intersectton of pA,(cr,, ~1~) with pik(cr,, tx2) for some A.,, ,Ik. For 
simple back-averaging, u represented the only degree of freedom and the intersec- 
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tions are points. Now there are two degrees of freedom a,, a2 and the intersections 
are curves 

The optimization concepts can be generalized to any finite number, K, of degrees 
of freedom, aI, a2, . . . . aK. 

For the current application we use three eigenvalues to determine the optimum. 
The explicit procedure for determining the optimum pair (a?*, a:*) follows: 

1. Calculate the optimum pair, (a:(l,, &J, a:(l,, A,)), for each pair of 
eigenvalues (A,, A,), j# k = 1,2, 3, using the Lagrangtan multiplier (58). 

2. Form the set OP of optimum pairs, 

OP = { (a?(& A), c-$(1,, A,)), J Zk = 1, 2, 3) (65) 

considering only two eigenvalues A, and 1,. (Note that this could be a minimum of 
pA, or pik, or a minimum within the intersection, 9.) 

3. Form the set OQ where 

OQ = (p,W,, A,), I= 1, 2, 3}, (66) 

where 

and 

I 
1, for J= l,k=2, 

i= 2, for j=2, k=3, (68) 
3, for J= 1, k=3. 

4. Calculate the intersection, (a{, a:) of pi,, pA2, pA, if it exists. If 
pA(af, a:) < 1, form the union of (a{, a:) with OP and the union of p(af, a:) with 
OQ. 

5. Evaluate pl,,,(af(i,, A,), a:(l,, A,)) for A,,, # (A, or A,) for all (j, k) pairs in 
Eq. (68) (i.e., for all values of I). If pi, > p: for the fth entry in OQ then delete p: 
from OQ and the fth entry, (af(l,, A,), a:(l,, A,)), of OP. 

Now OP contains all possible optimal vertices and minima of FM and OQ 
contains the corresponding value of F, at each entry of OP. 

6. Determine (a:*, a:* ) as the pair in OP which corresponds to the entry in 
OQ which is the minimum over all members of OQ (i.e., if the Ith entry in OQ is 
the minimum in OQ then (a:*, a:*) is the Ith entry of OP). 

By taking N= 3 we have made the brute force optimization procedure affordable 
and, as we mentioned, increasing N does not necessarily yield any benefit. 
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9. APPLICATION OF OPTIMAL BACK-AVERAGE ALGORITHM 
TO THE OUTER LOOP OF THE AD MODEL 

The two quantities back-averaged in the outer loop of the AD model are V&t)‘, 
which establishes the location of the separatrix in volume space, and J, which is an 
input for the equtlibrium solver. One way of applying the optimal back-average 
algorithm (OBA) to the outer loop simply uses the same optimal back-average 
parameter rxopt for V,,,,(t)’ and J. This method works well for easy problems. 

A somewhat more complicated method of back-averaging the outer loop is to use 
OBA to calculate a back-average parameter, txsep, for Vsep( t)’ and, then, to calculate 
a different one, CI,, for back-averaging J. This use of two separate back-average 
parameters is essential for convergence m the hard cases (small resistivity). 

First, take the same u to back-average both Vsep(f)’ and J. We begin by solving 
for A -~ ‘, where A is the column matrix, 

where 

here V~~$t)’ 
K( ( V~L,,, - 

is VJt)’ at the nth iteratron; Kc”) = K( V$2) and Kb”?t = 
V&9/2 + Vf::) at the nth iteration of the cuter loop. We form 

T= BA-‘, (71) 

where 

B= [I,-,&&]. (72) 

Next, the eigenvalues of ? are calculated. Then (24) is used to get Ain). The eigen- 
values J.!“), i = 2, 3 are the arguments of OBA. When SBA is used no additional 
iterations are required to calculate the eigenvalues. However, when 3PBA is 
applied, three additional iterations of SBA with a fixed u must precede the 
calculation of the ,I!“’ at the nth iteration. 

Two of the three eigenvalues of T, &“) and xv), are used by OBA. The third 
eigenvalue Xy) approximates 1. This is expected since for a fixed point of (23) to 
exist there must be an eigenvalue of ? near 1. The third eigenvalue used as input to 
OBA is 1, = 0. This in included to ensure that eigenvalues of T near zero which 
would have converged with straight iteration remain convergent. This follows from 
continuous dependence. 
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In brtef, the outer loop iteration with OBA is: 

1. Back-average V,,,(t)’ and J with cystart, a starting back-average parameter, 
for three iterations. 

2. Calculate p, XI”‘, I = 2, 3 and then Ljnl, I = 2, 3. 
3. Input to OBA 1, = 0, 2:“) and A?’ and specify SBA or 3PBA to get CL or 

(a,, a,), respectively. 
4 Do Case A or B: 

Case A. SBA, use a for three iterations then go to step 2. 
Case B. 3PBA, use (a,, ~1~) for the next 2k iterations, k= 1, 2, 3. Iterate 

with a fixed, u = GC,,~~, for 3 rteratrons. Go to step 2. 

To demonstrate the practical benefits of using OBA m this way in the outer loop, 
we compare ratios of convergence for cases of increasing difficulty. For thts 
comparison we define the convergence factor, CF, of the Iteration scheme over 
iterations I through k as 

CF = exp(ln(e,/e,)/(k - i)), (73) 

where ek represents (1 Jk - Jk ~, 11 at the kth rteratron of the outer loop. 
We now consider an “easy” case, one which converges, perhaps very slowly, 

without back-averaging. The resistivity for the easy case is two orders of magnitude 
larger than that for the “hard” cases. The J profile m the solution of the easy case is 
not sharply peaked near the separatrix. Moreover, the modulation of the shaping 
coils is decreased by two orders of magnitude from the hard cases. The excursion 
and velocity of the separatrrx are small enough so that straight iteratron of the 
outer loop converges. 

Convergence factors for the easy problem resultmg from using various back- 
average schemes are shown in Table I. The overall convergence 1s calculated with 
I = 1 and k equal to the total number of iterations required to meet the convergence 
criteria. The tail convergence, CFta,,, is calculated with I = k - 3. 

The overall convergence factors in Table I clearly show that back-averaging IS 
necessary for practical convergence since the convergence factor of the iteration 
without back-averaging (0.9979) is so close to 1 that 5800 iterations are required 
for convergence to a final error of 1 x lop6 from a typical initial error of 2 x 10-l. 
The Marder-Wertzner iteration scheme is srgnihcantly better than no back- 
averaging. However, for this problem It, too, is slow since 750 iterations are 
necessary to meet the convergence criterion with a CF of 0.984. 

Simple back-averaging with any constant back-average parameter, a in the range 
from 0.05 to 0.5 will result in reasonable convergence. Better, the optimum constant 
back-average parameter of 0.25 yields fast convergence: rt requires only thirteen 
iterations. The cost of optimizing a for a time step is iteration of that step to 
convergence with two or three different back-average parameters. This optimum 
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TABLE I 

CF for an Easy Case 

Ca5e Iteration Method CF oYer?.ll -,,,I 

1 Straight lteratton u = 0 0 998 0 998 
2 Marder-Wettzner tteratlon 0 984 0 985 
3 OBA simple back-average, SBA 0 330 0200 
4 OBA three-pomt back-average, 3PBA 0 324 0 206 
5 Constant simple back-average a = 0 05 0 760 0 783 
6 Constant sample back-average a = 0 15 0412 0315 
I Constant ctmple back-average a = 0 25 0 363 0321 
8 Constant simple back-average a = 0 5 0 575 0 487 

Note We show CF,,,,,,,, the convergence factor for the entlre outer loop from first estimate to 
convergence and the convergence factor CF,,,,, for the last three lteratlons before convergence All CF 
are for the same ttme step of an easy case The shapmg coil modulation was 00002, the reslsttvtty, 2 

changes from one time step to another for the same resistivtty and modulation and 
changes even more for runs with different resistivity and modulation. 

The benefit of both the OBA with simple back-average and the OBA with three- 
point back average schemes is clear. Their CF’s are at least 12% smaller than any 
others yielding convergence m at most eleven iterations. Most of all, the automatic 
routines do nor need two or more preliminary calculations of a single time step to 
find the optimum constant back-average parameter, after which an addittonal 
calculatton would have to be done to take advantage of the optimum constant 
back-average parameter. Instead, both OBA routines use information obtained 
from previous iterates of the same time step to adjust CI for the following iteration of 
that time step. Thus, each time step is solved only once, not two or more times. 
Accordingly, in this compartson both OBA routines are more than two times faster. 

The above compartson IS striking but, in practice, somewhat unrealistrc because 
one would rarely solve the same time step two times in order to solve tt quickly a 
third time. One would solve the time step only once with an average value of CL 
When this average case comparison IS made, the automatic back-average routines 
yield a CF approximately 50% smaller than the average CF of all the constant 
back-average parameter cases. Comparing the average number of Iterations to 
convergence, we note that with constant a, nineteen iterations are required, while 
only eleven are required for the automatic routines. Accordingly, on the average, 
OBA is almost twice as fast as using a constant back-average routine. For both 
OBA routines, CFta,, IS markedly smaller than CFove,a,,. This is expected because 
the outer loop transformation is better approximated by a linear transformation 
near the fixed point. Once m a neigborhood of a solution we can obtain high 
accuracy at minimal cost. 

Now let us back-average the outer loop using OBA for Vsep and J, independently. 
Let @sep be the back-average parameter for SBA applied to V$(t)‘. To determine 

5x1 7h,l-15 
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a sep we use (43) with A” grven m terms of 1”” by (24) with a fixed in the nth and 
(n - 1 )th iteration. In this, 

X(n) - 
A 

‘1 
A ’ (74) 

n-l 

where A, = V”‘(t) - =P V @-l’(t)‘. S=P The method IS equivalent to using only one elgen- 
value as input to OBA and specifying SBA as the back-average method. When a IS 
not constant for the two successive iteration steps, a:$ # a& I), Eq. (74) is not 
applicable. In that event, let Vi = Vsep (‘I + 3 --‘j(t)’ and a, = a!:,+ 3 m-1). Use (23) to iterate 
twice by 

T( r; - Vb) = A’“‘( v; - Vo) = ( v;+ , - vg, J= 1,2, 

and ehminate L’b to find 

~,,,=(l-rz)CV;-cc3v;l-(1-a,)CV;-r*v;l 
(l-cI~)(l-a*)(V;- Vi) . (75) 

Next, OBA is used on J. We calculate either aJ or the pan (a,, aZ), depending on 
whether SBA or 3PBA is to applied to the J profile of the outer loop. The eigen- 
values used by OBA to calculate ~1~ or (LY,, CL~)~ are calculated from (69), (71), and 
(72), where 

X” = 
1(1 (nl 

=P 
K’” ) 

I” (76) 

and $& is + at the separatrix at the nth iteration. 
The choice of variables in Xn depends on the problem being solved. In our 

solutions of the AD cases, the above variables work well but other combinations of 
$, K, and V also work. As a guideline to choosing r we ask that one or two 
variables should account for convergence over a major part of the domain and the 
third should control the convergence for any localized exceptional feature. Here, in 
(76), K is associated with convergence of quantities which are nor near the 
separatrix and I,G,,~, near the separatnx. Certainly, some experience and intuition 
about the problem are required to achieve convergence of a system with over 8000 
variables with a representative subsystem of only 3. Note that we cannot use a 
Newton method for our problem, since we know of no way of defining a derivative 
for the outer loop. A secant method is also impractical because it requires solving 
for the Jacobian of a system with 8000 variables, more work than solving the entire 
problem. 

The motivation for choosing the aJ and clsep Independently is twofold. First, the 
geometry is extremely sensitive to L’,,,(t)’ in typical hard cases. If spectal care IS not 
taken to control V,,,(t)‘, the geometry and profiles will quickly diverge from the 
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equilibrium solution of the previous time step and the outer loop will never 
converge. Second, after about five iterations of the geometry and profiles, the shape 
begins to converge much faster than the profiles. Since VL$(t)’ is more closely 
related to the shape than the J profile, it too will converge faster than the profiles. 
This difference in the rate of convergence can be converted from a hindrance to an 
advantage if V$!A(r)’ is back-averaged separately from J. Once the shape and 
V&f) have converged to a moderate degree of accuracy, further minor variations 
in them need not be considered in the choice of rJ. Instead, aJ can be determined 
by the flux profile which dominates the end of the iteration. 

The AD formulation of the model makes it simple to treat V$(t)’ and J 
separately. This IS one of the major advantages of mtroducmg volume space 
normalized to VL$(l) m the diffusion equation to locate the separatrix. (Recall that 
V::;(t) is mterpolated as a continuous cubic function with contmuous derivative 
Vqsf I’.) 

The above method complicates the outer loop somewhat because we can change 
only one back-average parameter at a time. Either ~l,,~ must be held fixed while aJ 
is calculated or vice versa; otherwise it is not clear to which change the eigenvalues 
are reacting. Accordmgly, the outer loop IS: 

1. Set V&(t)’ = Vsep( t - dt)’ and iterate the outer loop using aJ = aLstart to 
back-average J for a few iterations, say, k, < 8. 

3 -. Iterate the outer loop with asep = aZstart, aJ unchanged for kz = 3,4, 5 or 
until the error, er, m the outer loop, is less than e, S,art. 

3. Calculate A$‘:, then a,,,, from OBA and back-average for k, = 2, 3,4 or 5 
iterations. Repeat this step until er < e2start. 

4 Fix a,,+, to its last value or to aIstart (By this time VS,,(t)’ has converged to 
the point where asep is no longer critical.) 

5. If er < erc then exist (erc is our fixed error tolerance). 
6. Calculate 1 y’ then aJ or (2,. az)J from OBA. 
7. Do Case A or Case B 

Case A. SBA, use aJ for 3 iterations. Go to step 5. 
Case B. 3PBA, use (a,, az)J for 2k, iteration, k, = 1, 2, 3. Bach-average the 

outer loop with aJ = aJsafe, ~l,,~ unchanged. Go to step 5. 

The choice of alstart, aZslartT elstart7 ezstart, k,, k,, and k, depends on the case 
being solved. Typically the closer, alstart and aZstart are to 1, the safer they are for 
difficult cases and the slower the convergence, even for less difficult cases. We find 
that a I Start = 0.5 works well for most cases. aZstart = 0.9 works for all cases but 
aZstart =0.7 works better for less difficult cases; however, aZstart co.9 does not 
converge at all for difficult cases (see Table III). The choice of elstart is not critical; 
we favor e,,,,,, = 5 x 10-I. Good values for eZstart are approximately 1 x 10p3. If 
eZstart is too big, the eigenvalues input to OBA have little meaning since the outer 
loop transformation is poorly approximated by the linear transformation p and the 
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linear assumptron upon which OBA IS based is not applicable. Experience shows 
K, = 5, K, = 4, and K, = 1 or 2 work well in all cases. aJsale = 0.6 or 0.7 work well, 
in all but the difficult cases, where aJsale = 0.8 is advised. 

In addition to the above parameters, we specify three other parameters, am,“, 
a maxq and rmax. We admit only back-average parameters greater than a,,,; typtcally 
a In‘” - -0.5. The reason a,,, is specified is that only three eigenvalues are input into 
OBA but, in fact, T has many more. Back-averaging with a < 0 is beneficial for 
0 < IL1 < 1 but can cause eigenvalues with larger absolute value to diverge. a,,, IS 
the maximum a permitted; usually amax lies between 1.2 and 1.5. rmay is used to 
determine whether the maximum p(Ji”)), I = 0, 2, 3, for the aJ output from OBA is 
acceptable. If ~(1) > rmax, then aJsare is used Instead of aJ. 

A comparison of convergence factors for a typical adiabatic limtt case IS 
presented in Table II. A compartson of Methods 1 and 6 shows that the use of OBA 
to obtam asep and (a,, a2)J cuts the total number of Iterations to convergence by 

TABLE 11 

Convergence Factor Compartson for a Typtcal Adtabatic Limit Case 

Back-average Total Iteration up 
Method method CF CF,,,, iterattons to step 4 

a,ep = 0 5 

a,=09lixed 
ascp = 0 5 

a,=08fixed 
ascp = 0 5 

a,=O7fixed 

asep = 0 5 
a,= MWS 
(Not calculated 
to convergence ) 

asp OBA 
a, OBA SBA 
%an = 0 9 

arep OBA 
(a,, a, OBA, 3PBA 
astar, = 0.9 

awp OBA 
(a,, a*), OBA, 3PBA 
‘km = 0 7 

0 874 0 888 96 - 

0812 0791 61 - 

0820 0824 65 

0 998 0 998 6443 

0 838 0 7789 (0 785)” 56 30 

0 762 0415 (0666)” 45 30 

0.701 0.478 (0 640)” 35 21 

a 0 779 (0 785) mdtcates CF,,,, = 0 779 and CFoeA = 0 785, where CFosA IS calculated wtth 1 equal the 
number of iteratton to eZsrart. 

Norm Contams the convergence factors for the enttre outer loop, CF as well as CF,,,, for a typtcal 
near-adtabattc case The total number of tterattons and the number of iterattons of step 2 of the outer 
loop usmg OBA are enclosed where approprtate The same ttme step is done for all cases wtth r) = 0 025 
and the shapmg cod modulatron equal to 0 02 (Iteration counts are calculated assummg an mittal error 
of 2 x 10-i and a Iinal error of I x 1O-6 for the OBA cases e2,1ar, = 5. x 10-j). 
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more than one-half. Similarly the number of iterations for Method 7 using OBA is 
only slightly more than one-half of the number of iterations of Method 3 which uses 
a fixed LX,,~ and aJ equal to the ~~~~~~~ and aZstart, respectively, of Method 7. Further- 
more, the slowest case with 3PBA and OBA, Method 6, converged in two-thirds the 
number of iterations required for Method 2, the fastest routine without OBA. 

This method of calculating GL,,~ and aJ or (a,, az)J separately was used in the 
“easy case” which was discussed earlier. The resulting convergence factor for OBA 
with 3PBA was 0.321. The equivalent procedure using OBA with the same a for asep 
and a, resulted m an almost identical CF, 0.324. (See Method 4 of Table I.) For the 
method using OBA with SBA to calculate asep and aJ separately, CF = 0.377; the 
equivalent procedure using the same x,,~ and rJ is only slightly smaller with 
CF = 0.330. (See Method 3 of Table I.) 

Notice that a smaller aJstart can reduce the startup number of iterations as shown 
by Method 7, aJstarr = 0.7. However, more dihicult cases occur at different time steps 
of the same run, and for these, aJstart < 0.9 never converges (See Table III). 
Accordmgly, to be safe when using the same aJstar, for an entire run, typically three 
cycles of the forcing oscillations, a larger aJstart is required while a smaller aJstar, can 
be used to accelerate the convergence of some time steps. In practice, we use 
~.lstart = 0.7 when it is possible to watch the convergence periodically and change 
ahtart if necessary. We use aJstart =0.9 for the overnight runs which are done 
completely hands off. 

Although the convergence in the preliminary iteration is somewhat slow, the use 
of OBA after er < elstart enables rapid convergence to within a small tolerance. The 
tolerance m this case is 1 x 10p6. Notice that if the tolerance is reduced by 2 orders 
of magnitude to 1. x lo-’ only eleven more iterations are required for convergence 
based on CEoBA = 0.67 for Method 6, in contrast to the 36 iterations required if 
OBA is not used as in Method 1. This saves two-thirds the cost of the additional 
accuracy. 

This case and similar ones were tried with only one back-average parameter or 
pair for both I’&(r)’ and J(“) but divergence and convergence were so slow and 
erratic that they were unpredictable. This is due to the difference in the rate of 
convergence of the shape from the rate of convergence of the profiles. To fine tune 
I’:,“$ t)’ first, then J’“‘, works well and enables us to use the AD code for cases with 
singular profiles and rapidly changing shapes, problems which hitherto were 
impossible to solve. 

A comparison of different back-average schemes for a difficult case is presented m 
Table III. This difficult case is one time step which requires over 150 iterations of 
the outer loop with optimum fixed back-average parameters. We present the case 
r~ = 0.025 and fix the coil modulation, Fmod = 0.02. At this time step, L’,,,(t)’ is near 
its maximum. The optimum fixed back-average parameters for this time step are 
a sep = 0.5 and aJ = 0.9. To go from an initial error of 2 x 10-l to a final error of 
1 x lOem required 152 iterations of the outer loop with optimum fixed back-average 
parameters. Savings of 50% result from using OBA to calculate a,,,, and to 
calculate either aJ for SBA or the pair (a,, az)J for 3PBA m the outer loop of the 
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TABLE III 

Convergence Factor Comparison for a Dflicult Adlabatlc Llmlt Case 

Back-average Total Iteration up 
Method method CF CF,,,, lteratlon to step 4 

rep 5 = 0 
a,=O9tixed 

Isep = 0 5 
r, = 0 875 fixed 

arep = 0 5 
a,=O8fixed 

t(,,p = 0 5 
z,=O7tixed 

c& = 0 5 
a, = MWS 
(Not calculated to 
convergence) 

arep OBA, SBA 
(a,, q),OBA, 3PBA 
aJr1.m = 0 9 

are,, OBA. SBA 
zJ OBA, 3PBA 
~J,larl = 0 9 

0 923 0 960 152 

1010 

1011 

1012 

0 998 0 998 6100 

0852 0816 (0818)” 76 45 

0850 0822(0813)” 75 45 

“0816 (0818) mdlcates CF,,,,=O816, CFoaA=0818 
Nore Contams the convergence factors, CF. and the total number of lteratlons for the entlre outer 

loop from untlal error of 2 = IO-’ to convergence of 1 x 10m6 for a ddlicult case The tad convergence 
factor, CF,,,, as well as CFosA (see Table II for notation) are presented The same time step LS done for 
all cases The shapmg cod modulation was 002 The reslslstlvlty was 0025. The time step IS chosen for 
V&t)’ near Its maxlmum 

same time step. Notice that convergence for MWS is so slow that it IS not usable. 
With the same parameter set (alstart, aZstartr elstarr, e2sfart, amax, CL,,,,, rrnax) for both 
low resistivity and the extreme case of low resistivity combined with high 
modulation, using OBA results in a savings of at least 50% over the fixed GI cases. 
Therefore, it is cost effective to run our AD code completely hands off. Even when 
compared to a hands-on method which uses the optimum fixed ~l,,~ and c(~ for each 
time step (see Method 2 of Table II and Method 1 of Table III) the hands-off 
method using OBA shows a savings of over 40%. (see Method 6 m both Tables II 
and III.) Almost twice as many runs can be made using OBA to calculate tlseP and 
(a,, t(2)J than with optimum fixed CC~!,,~ and aJ. In addition, the outer loop using 
OBA can be done hands off. 

SUMMARY 

We have analyzed two- and three-point back-averaging as multi-stage iterative 
techniques for finding a fixed point of a nonhnear function F. For the complex 
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eigenvalues of the lmear approximation to F, we calculated the domain of 
convergence in the complex A-plane as a function of the back-average parameter m 
the neighborhood of the fixed point. For two-point back-averaging convergence is 
always posstble provided only that all eigenvalues fall to one side of the line 
Re A = 1. The Marder-Weitzner scheme (the first we know to converge with eigen- 
values on both sides of one) is now seen to be a special case of the more general 
method, three-point back-averaging (3PBA) An analytic formulation gives the 
domain of convergence of the method as a function of the back-average parameter; 
the domain boundaries are members of a one-parameter family of curves containmg 
lemniscates and ovals of Cassim. 

We have found an optimal back-average algortthm (OBA) which monitors the 
dominant eigenvalues of F (assummg F 1s approximately linear) during successrve 
Iterations. Our techniques are capable of solvmg a wide variety of problems of 
current interest in fusion plasma dynamics. In particular, we have employed the 
alternating dimension algorithm to solve resistive MHD equatrons of motion 
representmg the time evolution of comphcated magnetic field flux surfaces. The 
back-averaging techmque provides a fast and accurate solution. The central 
difficulties appear m the so-called outer loop of the algorithm, which calculates the 
strongly peaked current denstty profiles and determines the positton and velocny of 
a singular flux surface or separatrix We considered the outer loop iteration a three- 
dimensional transformation, I;, to approximate the eigenvalues of its lineartzation 
and solved the evolutron problem affected by these eigenvalues, using opttmized 
back-average parameters. 

Convergence tests show that for practical convergence of the AD outer loop m a 
doublet topology back-averaging is essential. Moreover, the tests of OBA show a 
double rate of convergence obtained with a fixed opttmal back-average parameter. 
This saving is further enhanced since each time step IS solved only once using OBA 
whereas findmg the fixed optimal back-average parameter requues solvmg one time 
step at least twice and perhaps three times. Most important, once we arrive m the 
netghborhood of a solution, OBA yields accurate convergence with a mimmum of 
addmonal work. 
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